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Flow cytometry (FCM) and flow cytometric sorting (FCS) systems

have developed as experimental tools of remarkable power and are

enjoying an ever-increasing impact in the general field of biology [1].

Application of these tools to plant biology has developed more slowly

given that the natural form of plants infrequently resembles that of

the single cell suspension, prototypically the hematopoietic system

that drove the original development of FCM/FCS. Nevertheless, these

systems have had a profound influence at all levels of plant biology,

from the study of single cells and subcellular organelles, to the behav-

ior of populations of plants, and ultimately to the performance of eco-

systems. It is safe to say their impact has not plateaued, as further

applications of this unique technology are increasingly developed by

innovative scientists around the world to address questions both in

the basic sciences, and to increasingly confront emerging problems in

the applied sector. For example, in addressing the challenges of sus-

tainable production of sufficient food resources based on plant breed-

ing involving ploidy-based approaches (e.g., induction of polyploidy)

[2] for the needs of our future global citizens, FCM, and FCS systems

will play central roles in this effort.

The degree to which FCM and FCS systems have impacted plant

biology and applied agricultural sciences must not be understated.

The major applications of DNA FCM are ploidy level and genome size

estimations, and cell cycle analysis/endoreplication (with the later

included in a lower percentage of studies). Indeed, FCM is currently/

extensively and almost exclusively employed as the method of choice

for measurement of plant genome sizes [3, 4]. Measurements of this

type impact agriculture in terms of ploidy estimation, with applications

ranging from plant biotechnology, breeding and seed quality testing to

taxonomy and population biology. They also impact the fundamental

plant sciences in terms of biosystematics, ecology, evolution, geno-

mics, and conservation, among other applications. One of the most

startling observations of the angiosperms is the bandwidth occupied

by genome size, which spans almost 2400-fold.

Flow sorting of higher plant chromosomes has provided invalu-

able information regarding the organization of DNA sequences within

plant species. It has also greatly facilitated the process of whole-

genome sequencing by permitting subdivision of large genomes into

samples comprising entire chromosomes or chromosome arms [5].

FCS methods applied to wall-less cells (protoplasts) expressing fluo-

rescent proteins (FPs) in a cell type-specific manner have allowed elu-

cidation of patterns of co-regulated gene expression and plant

hormone gradients identification [6, 7] within organized tissues, such

as roots [8, 9].

The trigger to develop this virtual issue came from the publica-

tion, in 2017, of an article entitled “Guidelines for the use of flow

cytometry and cell sorting in immunological studies” in the European

Journal of Immunology [10]. As noted in that article, one of the advan-

tages of FCM/FCS systems is that they are relatively simple to imple-

ment, with some qualifications, which coupled with the development

of user-friendly devices and software during the last 15 years led to

increasing applications in other areas, such as plant sciences. How-

ever, it is also simple to implement and operate the instruments inap-

propriately. This calls for a comprehensive and collective summary of

the best practices when applying FCM/FCS to plants, as was done for

immunology.

The first consideration addresses the problem that plants, particu-

larly the vascular plants, in their commonly recognized and utilized

forms, exist not as single cell suspensions (typical of immunology) but

as complex three-dimensional tissues comprising cells of irregular

shapes, different types and functions, that collectively cooperate to

produce the final plant form. Optimal methods for producing suspen-

sions of cells, subcellular organelles and other components appropri-

ate for FCM/FCS from these plant tissues and organs, are therefore

one of the challenges discussed in this virtual issue. We are fully

aware of the mantra that “junk in equals junk out” and having samples

of the highest quality prior to FCM/FCS is a critical concern we also

addressed here.

The second consideration relates to the vast variety of different

plant species found globally, and the recognition of the consummate

ability of plants to produce secondary metabolites/products, affecting

DNA staining and resulting fluorescence. Again, methods for recogniz-

ing and handling the different challenges provided to FCM/FCS

methods by the biochemistries of the source samples are required.

The third consideration focuses on the problem of addressing the

non-critical application of FCM/FCS methods developed for mamma-

lian cell systems (typically hematopoietic) to plants without careful

consideration of their appropriateness. As it will be detailed in this vir-

tual issue, application of FCM/FCS methods to mammalian cell sys-

tems almost exclusively occurs in the context of analysis of samples

that comprise a majority, often close to 100%, of single cells in sus-

pension. For plants, particularly when using these instruments and

methods for the analysis of organelles in tissue homogenates, the

objects of interest comprise a very minor subpopulation of the total

particles passing through the instrument. Concepts such as placing ini-

tial gates around populations defined by forward scatter (FS) versus

side scatter (SS), as routinely used to define leukocytes or other mam-

malian cells in culture, are at best meaningless and at worst can seri-

ously hamper proper use of the instruments to provide meaningful

results. Again, plants are sources of many forms of autofluorescence;

in vascular plants, chloroplasts are intensely fluorescent in the red due
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to the presence of chlorophyll. Phycoerythrin, a red protein-pigment

complex from the light-harvesting phycobiliprotein family found in red

algae and cryptophytes, is commercially employed as a fluorescent

label for antibodies in cytometry. The presence of autofluorescence

can restrict the wavelength bandwidths for fluorescence excitation

and emission, and this can affect how best to set up FCM/FCS

instruments.

In order to define and enunciate best practices, we drew together

a network of volunteer authors, experienced in the application of

FCM/FCS to plants. We have attempted to make this network as

comprehensive as possible, to allow recommendations spanning all

relevant life-forms, from the simplest photosynthetic microbes, to the

more complex lower and vascular plants, and encompassing also the

fungi. In this endeavor, we gratefully acknowledge the support of

Wiley and Attila Tarnok, EIC of Cytometry.

As indicated for the Guidelines in Immunology article [9], we do

wish to keep our recommendations updated. Therefore, please send

us your critical comments, new ideas, practical suggestions regarding

best practices, and new articles that could be useful for possible

future versions of this virtual issue.

To end, we would like to remember that this virtual issue reflects

the vision and dream of the late Jan Suda. He has been an inspiration

for all of us, and, most certainly, he left us too soon. We are sure that

his legacy will persist, not only in his home country, the Czech Repub-

lic, but also across the world. We sincerely hope this virtual issue of

Cytometry Part A provides an appropriate tribute.

1 | SETTING THE STAGE

Describing how FCCS can be optimally applied to plants requires

information in two general areas (a) concerning the samples being pre-

pared and analyzed, in our case focusing on the relevant physical fea-

tures of plants as organisms, and (b) concerning the instrumentation

being used for this analysis, centering on sample requirements

imposed by engineering design and implementation.

2 | VASCULAR AND NONVASCULAR
PLANTS

Green plants (Viridiplantae) constitute a monophyletic clade within

the tree of life and comprise oxygenic photosynthetic eukaryotes

[11]. The group encompasses green algae and land plants, and further

splits into major clades: the Chlorophyta [12], comprising only algae,

and Streptophyta formed by several algal groups (such as

Zygnematophyceae and Charophyceae; [13, 14]), and the land plants

(Embryophyta). Land plants further split into several groups: the possi-

bly paraphyletic assemblage of three bryophyte lineages (Bryophyta—

mosses, Marchantiophyta—liverworts, and Anthocerotophyta—horn-

worts) and three sequentially-splitting lineages of vascular plants:

lycopods (Lycopodiophyta), ferns and horsetails (Monilophyta) and

seed plants (Spermatophyta). The latter group further splits into

gymnosperms (Gymnospermae; i.e., conifers, cycads, Ginkgo, and

gnetophytes) and angiosperms (Angiospermae; [15-17]). The current

review is primarily but not exclusively focused on flow cytometric

applications in flowering plants, as they represent the most diverse

and economically important, and therefore best studied, group of

green plants. However, we mention the other green plant lineages

where necessary and we also include other organisms that are found

in various parts of the Tree of Life (algae in the traditional sense,

fungi) and that share certain features of body organization and life

style with plants (such as complex tissues or photosynthesis), and

have for a long time been a subject of Botany in the broadest sense.

The life cycles of algal groups are highly variable and may com-

prise stages only with haplophasic (n) or diplophasic (2n) chromosome

numbers, although in other species both stages are present but in sep-

arate generations [18]. All land plants exhibit a characteristic life cycle

which alternates between a haplophasic gametophyte and a diplo-

phasic sporophyte. Still, the relative importance of each stage in the

life cycle differs between groups: while the gametophyte stage domi-

nates in bryophytes (and is usually the tissue that is analyzed by

FCM), the sporophyte stage dominates in the vascular plant groups

and is the main focus of flow cytometric investigations. Despite a sig-

nificant reduction in the size of the gametophyte (comprising only up

to 3–4 cells/nuclei in flowering plants), there are flow cytometric

applications focused on either the independent gametophyte or the

spores of ferns or on pollen grains of seed plants [19]. Unlike vascular

plants, fungal life cycles are mostly haplophasic, with a short (often

single-celled) diplophasic stage, although most fungi (the Dikarya,

i.e., the Ascomycota and the Basidiomycota) are dikaryotic (n + n) in

part of their life cycles.

The evolution of plant genomes is dynamic, particularly in angio-

sperms, encompassing a range of genomic processes including multi-

ple rounds of whole genome duplication (polyploidization, [20, 21],

chromosomal rearrangements [22, 23] and the turnover and evolution

of repetitive DNA (including mobile elements and satellite DNA)

[24, 25]. This is mirrored in the tremendous variation in nuclear

genome sizes across green plants in general (c. 11,850-fold; 2) and

flowering plants in particular (2,400-fold variation; 3,4). This has cru-

cial implications for flow cytometric applications both with respect to

technical issues (a series of internal standards of different genome size

is required) and also as a study topic per se (e.g. what are the mecha-

nisms driving genome size evolution?). Similarly, the relative content

of AT versus GC base pairs is highly variable in green plants, although

this variation does not strictly correlate with nuclear DNA-content

(e.g., 26).

While the algal groups are mostly unicellular, or comprise a rather

simple multicellular thallus (e.g., Ulva, Cladophora, or Chara), land

plants form complex tissues and organs. The sporophyte of vascular

plants typically differentiates into roots, stems and leaves (note that

the floral parts of flowering plants are derived from the leaves). Similar

(yet haplophasic and thus non-homologous) structures are found in

the gametophytes of bryophytes: rhizoids, cauloids, and phylloids. The

specific morphology and anatomy of green plants, as distinct from

other eukaryotes, naturally has multiple implications/challenges for
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flow cytometric analysis. Firstly, we encounter cells having thick cell

walls that render flow cytometric analysis of individual cells impossi-

ble. Instead, isolated protoplast and, more commonly, nuclear suspen-

sions are used for the analysis of plant tissues [26–28]. Secondly, two

types of endosymbiotic organelles, each with their own genomes, are

present in most plant cells, mitochondria and plastids, and FCM appli-

cations have been designed to analyze those organelles [29–31].

Lastly, plants present a wide array of chemical compounds, so-called

secondary metabolites, conferring protection against factors both abi-

otic (e.g., UV-light, frost) and biotic (e.g., herbivores, parasites). Some

of these chemical compounds (for example, tannins) directly co-

interact with the DNA-binding stains used in FCM, and significantly

affect the quality and reliability of such analyses [32].

3 | OVERVIEW OF INSTRUMENTATION
AND PRINCIPLES

Flow cytometry and cytometric sorting systems are assembled from

distinct engineering modules which collectively function to determine

the optical properties of suspensions of biological particles, and selec-

tively isolate these particles, or subsets thereof, for subsequent analy-

sis and processing. The particles are typically constrained

hydrodynamically within an aqueous stream to flow singly through

regions of intense light, almost exclusively provided by lasers that are

focused on the stream. On illumination, the particles absorb and scat-

ter light and, if associated with fluorochromes, subsequently emit

fluorescence. The intensities of the scattered and fluorescent light

pulses coming from each particle are then measured. Key elements in

these modules are (a) a flow cell, which spatially positions and aligns

the flow stream containing the particles with the excitation light and

detection axes, (b) light scatter and fluorescence detectors, screened

by wavelength-appropriate filters and oriented orthogonally to the

direction of the flow stream and the excitation light path,

(c) electronic circuitry including analog-to-digital converters (ADCs)

which convert the voltage pulses emerging from the detectors into

digital values corresponding to the outputs from the individual parti-

cles, (d) computational architecture to process and store the informa-

tion from these pulses for further analysis, or to use them

immediately for processing sort-related decisions, and (e) mechanisms

to implement individual, high-speed sorting of the particles, based on

preselected combinations of optical characteristics.

One of the first implementations of flow sorting, and one of the

most influential, was described by Bonner et al. [33] for characteriza-

tion and isolation of various mammalian cell types including those of

the hematopoietic system. To date, immunological applications repre-

sent the largest fraction of cytometric activities, worldwide. Most flow

sorters employ a version of this original implementation, which

involves precise conversion of the flow stream into a series of individ-

ual droplets, electromechanically synchronized to appear at a fixed

distance below the point of laser interception (Figure 1). Based on the

degree of sample dilution, some of these droplets contain the cells of

interest, and can be selectively displaced into collection vessels by a

process of charging the droplet at the point of its detachment from

the flow stream followed by passage through a fixed electrostatic

field. The rates of sorting depend on the size of the cells, which deter-

mines the size of the flow tip, and the rate of flow of the fluid

stream [34].

Advances in the area of instrument development have included

multiplexed excitation and detection modalities to comprehensively

cover the excitation and fluorescence emission spectra of the avail-

able fluorochromes [35]. Recently, spectral analysis has been demon-

strated as an alternative to conventional light filters in FCM [36, 37].

Other advances include the use of flow tips that accommodate cells

and biological particles that are larger, and sometimes much larger,

than mammalian blood cells, drastic reductions in overall instrument

sizes, footprints, and purchase costs, full replacement of analog by

digital signal processing and the use of miniaturized fluidics systems

with corresponding improvements in accuracy and reliability, and

accompanied by reductions in costs of maintenance.

4 | RATIONALE AND TARGET

Flow cytometry and flow cytometric sorting are not new methods.

However, their use in Plant Biology has grown dramatically in the last

decades, and in some cases, such as genome size measurements,

these technologies have come to dominate. At the same time, instru-

ments and associated protocols continue to be improved and

expanded (e.g., bead beating, the use of tissues other than leaves, dry

tissue). The literature now includes many resources outlining methods,

theoretical issues, and limitations of methods (e.g., the “Flow Cyto-

metry with Plant Cells” book [38], ESACP guidelines http://www.

classimed.de/esacflow.html). However, despite this progress, it is clear

from some recent publications that experimental design and manu-

script review have not always kept pace with what we know about

the application of FCM and cytometric sorting to plants, and this has

adversely affected the quality of the results and the conclusions

drawn.

Contributing factors include:

1. The practical need of carrying out experiments at centralized flow

facilities that are not primarily concerned with, or understand, the

characteristics of the input plant materials, or the types of ques-

tions (e.g., the large amounts of samples used in population biol-

ogy) that are being addressed.

2. Effects of “lab culture,” in which poor practices that have become

established in laboratories are taught to uncritical novices.

3. Recommendations for “best practices” being scattered across the

existing scientific literature: thus, a comprehensive article summa-

rizing key rules for the reliable application of FCM and FCS to

plants is still lacking, even for widely used applications such as

DNA content measurements (but see 28).

Examples of poor practices and erroneous theories developed as

a consequence of these practices, identified by Jan Suda in the
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original draft, include flax genotrophs and problems with intraspecific

variation reports, as reviewed in Greilhuber [35]. Recent tendencies in

manuscripts to justify the use of dry tissue based on existing literature

frequently lack acknowledgment of necessary precautions from the

prior literature.

The main objective of this virtual issue is to outline key experi-

mental issues and associated guidelines (under the heading of “Best
Practices”) that researchers are recommended to follow, and to pro-

vide the rationale for these recommendations, such that the guide-

lines may be modified with confidence as new applications emerge.

We also identify those areas where the establishment of clear guide-

lines will require additional empirical data or theoretical work. Such

guidelines will benefit researchers, facility managers, journal editors,

and reviewers, since they should serve to guarantee high-quality

results through elimination (or, at the very least, minimization) of

artifactual variation from future research submitted for publication, as

well as providing a means to identify artifacts within the published

literature.

5 | THE SCOPE OF THIS VIRTUAL ISSUE IS

1. Applications based on the staining of DNA (ploidy, genome size,

AT/GC content, cell cycle, including endoreduplication, nuclei and

chromosome sorting) which represent a majority of uses.

2. Applications based on sorting single cells (protoplasts) and organ-

elles (nuclei, mitochondria and plastids), based on use of FPs or

fluorescent dyes in protoplast/organelle sorting for downstream

omics analyses at the cell-type-specific or organelle-specific

level.

F IGURE 1 Schematic of the process of droplet formation for a typical droplet-in air flow sorter. Droplet formation is synchronized below the
point of interception of the flow stream by the laser illumination. The undulation wavelength (λ) is defined by the velocity of the flow stream, and
the drive frequency of the piezo-electric oscillator attached to the flow cell. A constant high DC voltage is maintained across the deflection plates.
Precise switching of the charge applied to the flow stream at the time of droplet break-off retains that charge on the droplet, which then can be
predictably deflected by the electric field
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3. A focus predominantly on plants, but with separate sections

devoted to algae, and to fungi. However, in many cases, the gen-

eral principles should apply across all organisms; wherever possi-

ble, we will extrapolate to other organisms.

The emphasis will be on providing guidelines for reviewers and

for experimental design. This will NOT be a methods virtual issue in

the sense of providing protocols: these are well-covered elsewhere

(e.g., [27], “Flow Cytometry with Plant Cells” book [38], the supple-

mental material of Kron et al. [39], online resources).
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